Computing sensitivities of the electrostatic potential by automatic differentiation.




Given a computer model for the electrostatic potential in an L-shaped region with media of different dielectric permeabilities in two subregions, we are interested in the robustness of the simulation by identifying the rate of change of the potential with respect to a change in the permeabilities. Such sensitivity analyses, assessing the rate of change of certain model outputs implied by varying certain model inputs, can be carried out by computing the corresponding partial derivatives. In large-scale computational physics, the underlying computer model is typically available as a complicated computer code in a high-level programming language such as Fortran, C, or C++. To obtain accurate and efficient derivatives of functions given in this form, we use a technique called automatic or algorithmic differentiation. Unlike numerical differentiation based on divided differences, derivatives generated by automatic differentiation are free of truncation error. Here, the automatic differentiation tool Adifor is used to transform the given computer model-implemented with the general purpose finite element package SEPRAN-into a new computer code computing the derivatives of the electrostatic potential with respect to the dielectric permeabilities. In doing so, we automatically translate the given 400,000 lines of Fortran 77 into a new program consisting of 600,000 lines of Fortran 77. We compare our approach with a traditional approach based on numerical differentiation and quantify its advantages in terms of accuracy and computational efficiency.